Part Il

Beyond the STL.:
components and
applications



Set operations
on associative
containers

Summary: This chapter presents operations which are not included in the STL and
which overcome the limitations described in Section 5.6.6. This has its price: these
algorithms no longer work on simple C arrays and thus do not satisfy the require-
ments put on their algorithms by the authors of the STL. The price, however, is not too
high, because algorithms and data structures should match. Thus, the data structures
suitable for set operations are not necessarily sorted C arrays, but sets, represented,
Jfor example, by the set class.

The algorithms in this chapter have a further advantage: they work not only on the
sorted set containers of the STL, but also on unsorted associative containers as de-
scribed in Chapter 7. Then, they are not slower than the set operations of Section
5.6. The algorithms of this chapter are not designed for multisets, but they can be
extended accordingly.

The names of the algorithms differ from those of the STL because they lack the
set prefix and have an upper case initial letter. All algorithms and examples in Part
III, which starts with this chapter, are also available via the Internet (see page 271).

The set_type placeholder for the data type used in the following templates
applies to all set containers that provide the following methods:

begin ()
end ()
find ()
insert ()
swap ()

In addition, just the public type
set_type::const_iterator

must be available, by means of which elements of the set can be accessed. Obviously,
the semantics of the methods and the iterator type must conform to the STL.



162 SET OPERATIONS ON ASSOCIATIVE CONTAINERS

6.1

6.2

Subset relation

This algorithm determines whether a set s2 is contained in a set s1. Each element of
s2 is checked to see whether it is included in s1:

// include/setalgo.h

#ifndef SETALGO_H
#define SETALGO_H
namespace br_stl {

template<class set_type>
bool Includes (const set_type& sl, const set_type& s2) {

// Is s2 contained in s17?

if (&sl == &s2) // save time if the sets are identical

return true;

/+«The check for identity must not be confused with the check for equality which
would have to be formulated as 1 £ (s1 == s2) .. .!The identity check is very
fast, because only addresses are compared. The equality check can take a long
time, because the sets must be compared element by element.

*/
typename set_type::const_iterator 1 = s2.begin();

while(i !'= s2.end()) {
if(sl.find(xi++) =
return false;

= sl.end()) / / not found

}

return true;

The complexity is O(N3 log N7) for the STL class set and O(N3) for the class
Hset in Chapter 7. Here and in the following sections, /N1 and N> denote the number
of elements in s1 and s2.

The check for identity of the arguments saves time because the loop is not ex-
ecuted. If s2 is larger than s1, it cannot be contained in s1 — a chance for further
optimization (not shown in the code).

Union

This and the following algorithms have three sets as parameters, with the third pa-
rameter result containing the result after the end of the algorithm. When calling
the function, result can be identical with s1 or s2, so a temporary set is used
to store the intermediate results. In order to save an assignment result = temp,
which is expensive when many elements are involved, the member function swap ()
of the container is employed. Union () initializes temp with s2 and adds all the
elements of s1.



INTERSECTION 163

template<class set_type>
void Union (const set_type& sl, const set_type& s2,
set_type& result) {
set_type temp(s2);
if(&sl != &s2) {
typename set_type::const_iterator 1 = sl.begin();
while (1 != sl.end())
temp.insert (xi++);
}
temp.swap (result) ;

}

The i £ condition is used for speed optimization. If both sets are identical, there
is no need for the loop. The complexity is O(Ns log N2 + Njlog Ny) for the STL
class set and O(N3 + Ny ) for the class HSet in Chapter 7. The first term of the sum
refers to the initialization of temp, the second to the loop.

6.3 Intersection

The Intersection () algorithm begins with an empty container and inserts all the
elements that are contained both in s1 and in s2.

template<class set_type>
void Intersection(const set_type& sl, const set_type& s2,
set_type& result) {
set_type temp;
typename set_type::const_iterator il = sl.begin(), i2;

// An identity check makes no sense, because in case
// of identity, t emp must be filled anyway.

while (i1l !'= sl.end()) {
i2 = s2.find(*11++);
if(i2 != s2.end())

temp.insert (x1i2);
}
temp.swap (result) ;

}

The complexity is O(N; log N2) for the STL class set and O(Ny) for the class
HSet (Chapter 7). The factor IV, refers to the loop, the rest to the £ind () operation.
The function insert () is only called a maximum of (min(/Ny, N2)) times and is
therefore not considered in the complexity analysis.

Here too, a gain in speed could be achieved by running the loop on the smaller
of the two sets.

6.4 Difference



164

SET OPERATIONS ON ASSOCIATIVE CONTAINERS

Here, all the elements are inserted into result which are contained in s1, but not
in s2.

template<class set_type>
void Difference (const set_type& sl, const set_type& s2,
set_type& result) {
set_type temp;

typename set_type::const_iterator i = sl.begin();
if(&sl != &s2)

while(i != sl.end()) {
if(s2.find(xi) == s2.end()) // not found
temp.insert (x1i);
++1;
}

temp.swap (result) ;

The complexity is O(N7 log(max(Ny, N3))) for the STL class set and O(Ny)
for the class Hset (Chapter 7). Calculation of the maximum is necessary, because
for a small set s2, very many elements of s1 must be inserted into temp, or for a
large N5, the number of insert () operations may also be small.

The check for non-identity (¢s1 != &s2) saves the loop in case of identical
arguments and immediately returns an empty set. Initializing of temp with s1 and
deletion of all elements contained in s2 does not lead to a gain in time, because the
possible savings in the loop are compensated by the cost of the initialization. Some
time could, however, be saved by choosing the smaller set for the loop (see Exercise
6.1).

6.5 Symmetric difference

This algorithm finds all the elements that occur in s1 or in s2, but not in both. The
symmetric difference is equivalent to (s1 — s2) U (s2 — s1) (implemented here) or
(s1Us2) — (s1Ns2).

template<class set_type>
void Symmetric_Difference (const set_type& sl1,
const set_type& s2,
set_typeé& result) {
set_type temp;

typename set_type::const_iterator 1 = sl.begin();
if(&sl != &s2) {
while (i != sl.end()) {
if(s2.find(*1) == s2.end()) // notfound

temp.insert (x1i);



++1i;

}

i = s2.begin();

while(i !'= s2.end()) {
if(sl.find(*x1) == sl.end())

temp.insert (xi);
++1;

}

temp.swap (result) ;
}
} // namespace br_stl
#endif // File setalgo.h

EXAMPLE

// not found

165

The complexity is O((Ny + Nz) log(max(Ny, Na))) for the STL class set and
O(N;7 + Ny) for the class Hset (Chapter 7). The check for non-identity (s¢s1 !=
&s2) saves the loop in case of identical arguments and directly returns an empty set.

6.6 Example

This example contains a compiler switch STL_set which allows you to compile
the program both with the set container of the STL and with the faster HSet con-
tainer (Chapter 7). This shows the compatibility of the algorithms with two different
set implementations. The switch controls not only the type definitions, but also the
inclusion of a class HashFun used for the creation of a function object for the ad-
dress calculation. HashFun serves as standard hash-function object, provided that
no different object is required, and is stored in the file hashfun.h:

// include/hashfun.h

// Standard function object, see Chapter 7
#ifndef HASH_FUNCTION_H
#define HASH_FUNCTION_H

namespace br_stl {
template<class T>

class HashFun {
public:

HashFun (long prime=1009) : tabSize(prime) {}

long operator () (T p) const {

o)

return long(p) % tabSize;

}

long tableSize() const { return tabSize;}

private:
long tabSize;



166 SET OPERATIONS ON ASSOCIATIVE CONTAINERS

}i
} // namespace br_stl
#endif

In order not to repeat the example in Chapter 7, it is recommended that you try
it out again after reading the next chapter, commenting out the macro

// #define STL_set

This does not change the behavior of the program, only the underlying implementa-
tion — and with this, the running time.

// k6/mainset.cpp

// Example for sets with set algorithms

/ / alternatively for set (STL) or HSet(hash) implementation
#include<showseqg.h>

#include<setalgo.h>

// compiler switch (see text)

#ifdef STL_SET

#include<set>

char msg[] = "std::set chosen";
#else

#include<hset.h>
#include<hashfun.h>

char msg[] = "br_stl::HSet chosen";
fendif

using namespace std;

int main() {
// type definition according to selected implementation
#ifdef STL_set
// default setting for comparison: less<int>
typedef set<int> SET;
#else
typedef br_stl::HSet<int, br_stl::HashFun<int> > SET;
#endif

SET Setl, Set2, Result;

int 1i;

for(i = 0; i1 < 10; ++i) Setl.insert (i);
for(i = 7; 1 < 16; ++i) Set2.insert (i);
// display

br_stl::showSequence (Setl);
br_stl::showSequence (Set2);
cout << "Subset:\n";
cout << "Includes (Setl, Set2) ="
<< br_stl::Includes (Setl, Set2) << endl;



EXAMPLE

cout << "Includes (Setl, Setl) ="
<< br_stl::Includes(Setl, Setl) << endl;

cout << "Union:\n";
br_stl::Union(Setl, Set2, Result);
br_stl::showSequence (Result);

cout << "Intersection:\n";
br_stl::Intersection(Setl, Set2, Result);
br_stl::showSequence (Result);

cout << "Difference:\n";
br_stl::Difference(Setl, Set2, Result);
br_stl::showSequence (Result) ;

cout << "Symmetric difference:\n";
br_stl::Symmetric_Difference(Setl, Set2, Result);
br_stl::showSequence (Result);

cout << "Copy constructor:\n";
SET newSet (Result);
br_stl::showSequence (newSet) ;

cout << "Assignment:\n";
Result = Setl;
br_stl::showSequence (Setl);
br_stl::showSequence (Result);

167



